Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Innovation (Camb) ; 4(1): 100359, 2023 Jan 30.
Article in English | MEDLINE | ID: covidwho-2184481

ABSTRACT

The BBIBP-CorV severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inactivated vaccine has been authorized for emergency use and widely distributed. We used single-cell transcriptome sequencing to characterize the dynamics of immune responses to the BBIBP-CorV inactivated vaccine. In addition to the expected induction of humoral immunity, we found that the inactivated vaccine induced multiple, comprehensive immune responses, including significantly increased proportions of CD16+ monocytes and activation of monocyte antigen presentation pathways; T cell activation pathway upregulation in CD8+ T cells, along with increased activation of CD4+ T cells; significant enhancement of cell-cell communications between innate and adaptive immunity; and the induction of regulatory CD4+ T cells and co-inhibitory interactions to maintain immune homeostasis after vaccination. Additionally, comparative analysis revealed higher neutralizing antibody levels, distinct expansion of naive T cells, a shared increased proportion of regulatory CD4+ T cells, and upregulated expression of functional genes in booster dose recipients with a longer interval after the second vaccination. Our research will support a comprehensive understanding of the systemic immune responses elicited by the BBIBP-CorV inactivated vaccine, which will facilitate the formulation of better vaccination strategies and the design of new vaccines.

2.
Clin Kidney J ; 15(5): 974-984, 2022 May.
Article in English | MEDLINE | ID: covidwho-1853008

ABSTRACT

Background: Critically ill patients with severe acute kidney injury (AKI) requiring kidney replacement therapy (KRT) have a grim prognosis. Recently, multiple studies focused on the impact of KRT initiation time [i.e., accelerated versus watchful waiting KRT initiation (WWS-KRT)] on patient outcomes. We aim to review the results of all related clinical trials. Methods: In this systematic review, we searched all relevant randomized clinical trials from January 2000 to April 2021. We assessed the impacts of accelerated versus WWS-KRT on KRT dependence, KRT-free days, mortality and adverse events, including hypotension, infection, arrhythmia and bleeding. We rated the certainty of evidence according to Cochrane methods and the GRADE approach. Results: A total of 4932 critically ill patients with AKI from 10 randomized clinical trials were included in this analysis. The overall 28-day mortality rate was 38.5%. The 28-day KRT-dependence rate was 13.0%. The overall incident of KRT in the accelerated group was 97.4% and 62.8% in the WWS-KRT group. KRT in the accelerated group started 36.7 h earlier than the WWS-KRT group. The two groups had similar risks of 28-day [pooled log odds ratio (OR) 1.001, P = 0.982] and 90-day (OR 0.999, P = 0.991) mortality rates. The accelerated group had a significantly higher risk of 90-day KRT dependence (OR 1.589, P = 0.007), hypotension (OR 1.687, P < 0.001) and infection (OR 1.38, P = 0.04) compared with the WWS-KRT group. Conclusions: This meta-analysis revealed that accelerated KRT leads to a higher probability of 90-day KRT dependence and dialysis-related complications without any impact on mortality rate when compared with WWS-KRT. Therefore, we suggest the WWS-KRT strategy for critically ill patients.

3.
Nature ; 604(7907): 723-731, 2022 04.
Article in English | MEDLINE | ID: covidwho-1799583

ABSTRACT

Studying tissue composition and function in non-human primates (NHPs) is crucial to understand the nature of our own species. Here we present a large-scale cell transcriptomic atlas that encompasses over 1 million cells from 45 tissues of the adult NHP Macaca fascicularis. This dataset provides a vast annotated resource to study a species phylogenetically close to humans. To demonstrate the utility of the atlas, we have reconstructed the cell-cell interaction networks that drive Wnt signalling across the body, mapped the distribution of receptors and co-receptors for viruses causing human infectious diseases, and intersected our data with human genetic disease orthologues to establish potential clinical associations. Our M. fascicularis cell atlas constitutes an essential reference for future studies in humans and NHPs.


Subject(s)
Macaca fascicularis , Transcriptome , Animals , Cell Communication , Macaca fascicularis/genetics , Receptors, Virus/genetics , Transcriptome/genetics , Wnt Signaling Pathway
4.
Immunity ; 53(3): 685-696.e3, 2020 09 15.
Article in English | MEDLINE | ID: covidwho-716745

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic poses a current world-wide public health threat. However, little is known about its hallmarks compared to other infectious diseases. Here, we report the single-cell transcriptional landscape of longitudinally collected peripheral blood mononuclear cells (PBMCs) in both COVID-19- and influenza A virus (IAV)-infected patients. We observed increase of plasma cells in both COVID-19 and IAV patients and XIAP associated factor 1 (XAF1)-, tumor necrosis factor (TNF)-, and FAS-induced T cell apoptosis in COVID-19 patients. Further analyses revealed distinct signaling pathways activated in COVID-19 (STAT1 and IRF3) versus IAV (STAT3 and NFκB) patients and substantial differences in the expression of key factors. These factors include relatively increase of interleukin (IL)6R and IL6ST expression in COVID-19 patients but similarly increased IL-6 concentrations compared to IAV patients, supporting the clinical observations of increased proinflammatory cytokines in COVID-19 patients. Thus, we provide the landscape of PBMCs and unveil distinct immune response pathways in COVID-19 and IAV patients.


Subject(s)
Coronavirus Infections/immunology , Cytokines/immunology , Influenza, Human/immunology , Leukocytes, Mononuclear/immunology , Pneumonia, Viral/immunology , Signal Transduction/immunology , Betacoronavirus/immunology , COVID-19 , Humans , Influenza A Virus, H1N1 Subtype/immunology , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL